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Abstract

We present a system for estimating the location and ori-
entation of a person’s head from depth data acquired with a
Kinect or similar consumer depth cameras. Our approach
is based on discriminative random regression forests which
simultaneously classify image regions into whether they be-
long to the head region or not and cast probabilistic votes
in a continuous space of head poses, defined as the 3D po-
sition of the nose and the Euler rotation angles.

1. Introduction

Despite recent advances, people still interact with ma-
chines mainly through devices like keyboards and mice. Be-
sides the interpretation of full body movements, as done by
the Kinect, future, more natural interfaces will need to take
also head motion into account, as much of human-human
communication goes through face and head movements.

In particular, head pose estimation is a key component
of many desirable applications, from identity recognition to
driver’s drowsiness detection. Most the works in the litera-
ture [6] use standard imagery, facing challenges like light-
ing changes and texture-less facial regions; many of such
problems can now be solved thanks to the introduction of
the Kinect and other affordable depth sensors. Yet, 3D data
has mainly been used for face tracking [7], leaving open
issues of drift and (re-)initialization. Frame-by-frame esti-
mation, on the other hand, provides increased robustness.

We define 3D head pose estimation as the localization
of the nose tip and the determination of the head orientation
encoded as Euler angles. Most 3D methods use geometry to
localize the nose tip and are thus sensitive to its occlusion.
In [2] and [3], we instead introduced a voting framework
where different depth patches contribute to the estimation.
We use random forests (RFs) [ 1], following their recent suc-
cess in many computer vision tasks: from object detection
and action recognition [4] to real-time human pose estima-
tion [5]. RFs are fast at both training and testing, lend them-
selves to parallelization and are inherently multi-class. The

method we demonstrate estimates the desired, continuous
parameters directly from low resolution depth images ac-
quired with a Kinect [3]. Our system works in real-time,
without manual initialization, and does not rely on specific
features to be visible. In our demonstrator, we show that
it works for unseen faces and that it handles large pose
changes, variations in facial hair, and partial occlusions due
to glasses, hands, or missing parts in the 3D reconstruction.

2. Method
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Figure 1. (a): Example random forest for head pose estimation.
Test samples ending in positive leaves retrieve a Gaussian distri-
bution used for voting in the head pose space. (b): Example binary
test defined within the depth patch.

Random forests [ 1] are collections of decision trees, each
trained on a randomly sampled subset of the available data.
In our system, a tree is built from a set of annotated patches,
randomly extracted from the training images. Annotation
includes a binary class label ¢ (head/not head) and real-
valued quantities describing the head pose 6 (i.e., the off-
set vector from the 3D patch center and the nose tip and the
three Euler rotation angles). Each tree is built recursively by
selecting a binary test ¢(Z) — {0, 1} at each node, which
sends each patch either to the left or right child based on its
appearance Z. Our binary tests ¢, g, - (Z) are defined as:
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where F; and F, are two rectangles defined within the
patch, and 7 is a threshold. An example test is shown in



Fig. 1 (a), with the red patch containing the two regions F}
and F5 defining the test (in black); the arrow is the offset
between the 3D patch center (in red) and the ground truth
nose location. The optimal test for a node is chosen from
a large pool of randomly generated binary tests, as the one
which maximizes the information gain of the split IG (¢):
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where w; is the ratio of patches sent to each child node.
H (P) is a measure of the patch cluster P related to the
labels’ entropy, taking both classification (dividing head
patches from the rest of the body) and regression (clustering
together patches with similar votes in the head pose space)
into account. In [3], we evaluated different strategies for
jointly solving the classification and regression problems at
hand, all achieving comparable results. The process contin-
ues with the left and the right child using the corresponding
training sets until a leaf is created when either the maxi-
mum tree depth is reached, or less than a minimum number
of training samples are left.

For each leaf, the probabilities of belonging to a head
p(c =1 73) and the distributions of the continuous head
pose parameters p(6) = N (6;0,%) (we assume multi-
variate Gaussians) are stored. The distributions are esti-
mated from the training patches that arrive at the leaf. When
presented with a test image, patches are sampled (a stride
controls the sampling’s density) and sent down through all
trees. Each patch is guided by the binary tests until a leaf,
where the probability p(c = 1| P) tells whether the patch
belongs to a head or not. We only consider leaves with
a high probability and use the stored distributions for es-
timating @, as exemplified by Fig. 2. The votes are then
clustered, and the clusters further refined by mean shift in
order to remove outliers, as shown in Fig. 2(b). A cluster
with a large number of votes is declared as a head and the
votes averaged, resulting in a Gaussian which encodes the
head pose estimate (mean) and a measure of its uncertainty
(covariance).

3. Evaluation

To train and test our system, we recorded a database
with a Kinect: 24 sequences of 20 subjects recorded while
sitting about 1 meter away from the sensor. All sub-
jects rotated their heads around freely and we labeled
the sequences with the nose position and head orienta-
tion using the person-specific head tracker of [7]. The
resulting Biwi Kinect Head Pose Database contains head
rotations in the range of around +75° for yaw, +60°
for pitch, and +50° for roll. We performed a 4-fold,
subject-independent cross-validation, using as measure
the exponential weighting scheme proposed in [3], with
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Figure 2. (a) Example votes. The colored patches are classified as
positives and cast votes for the nose position (correspond spheres).
The black patch is classified as negative and does not vote. (b)
Example test image: the green spheres represent the votes selected
after outliers (blue spheres) are filtered out. The green cylinder
stretches from the estimate of the nose center in the face direction.

Figure 3. Example frames from a video of the system running in
real time on a standard laptop.

A = 5. For a forest of 20 trees and a stride of 10,
the nose localization error was 13.0 + 26.2mm and the
direction estimation error 4.1 £ 8.3°, for a processing
time of about 19 ms. Videos, database, and sample
source code are available at www.vision.ee.ethz.
ch/~gfanelli/head_pose/head_forest.html.

References

[1] L. Breiman. Random forests. Machine Learning, 45(1):5-32,
2001. 1

[2] G. Fanelli, J. Gall, and L. Van Gool. Real time head pose es-
timation with random regression forests. In IEEE Conference
on Computer Vision and Pattern Recognition, 2011. 1

[3] G. Fanelli, T. Weise, J. Gall, and L. Van Gool. Real time head
pose estimation from consumer depth cameras. In German
Association for Pattern Recognition, 2011. 1, 2

[4] J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky.
Hough forests for object detection, tracking, and action recog-
nition. TPAMI, 2011. 1

[5] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and A. Fitzgib-
bon. Efficient regression of general-activity human poses from
depth images. ICCV, 2011. 1

[6] E.Murphy-Chutorian and M. Trivedi. Head pose estimation in
computer vision: A survey. Transactions on Pattern Analysis
and Machine Intelligence, 31(4):607-626, 2009. 1

[71 T. Weise, S. Bouaziz, H. Li, and M. Pauly. Realtime
performance-based facial animation. ACM International Con-
ference on Computer Graphics and Interactive Techniques
(SIGGRAPH), 2011. 1,2


www.vision.ee.ethz.ch/~gfanelli/head_pose/head_forest.html
www.vision.ee.ethz.ch/~gfanelli/head_pose/head_forest.html

